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Non-equilibrium effects in two-phase seepage, associated with a change in the rheological properties of the microemulsions formed 
during the motion of a water-oil mixture in a porous medium, are considered. It is shown, on the basis of an asymptotic and 
numerical analysis of the mode proposed, that oscillations in the pressure drop which occur during two-phase seepage can be 
the result of the combined effect of non-linear rheological properties and the lag in the processes involving the restructuring of 
microemulsion systems. © 2000 Elsevier Science Ltd. All rights reserved. 

The dependences of the pressure drop on time, obtained during laboratory investigations of samples 
of a porous medium, are significantly different from the theoretical curves calculated using the Muskat- 
Leverett models of two-phase seepage. When a two-phase mixture flows through a porous medium, 
oscillations in the pressure drop are observed for which there is no satisfactory explanation. It is shown 
below that these oscillations are associated with non-equilibrium effects. Non-equilibrium effects due 
to processes involving the redistribution of the phases in pores have been considered previously in 
[1, 2]. The effect of the microemulsion state of the part of the masses in the seepage flow on the phase 
permeabilities has been analysed in [3]. In this paper, it is proposed to take account of the non- 
equilibrium effects associated with a charge in the rheological properties in microemulsified media. 
Here, the two-phase fluid is in the form of a microemulsion; the particles of which possess viscoelastic 
properties. During the motion through the porous channels, which is accompanied by deformation of 
the particles, there is change in the seepage resistance of the flow due to restructuring of the 
microemulsion with a relaxation time which is characteristic for the given system. 

Taking account of these concepts, a mathematical model of the process in which oil is displaced from 
a sample of a porous medium by water is then considered. 

1. E Q U A T I O N S  O F  U N S T E A D Y  S E E P A G E  

Laboratory experiments show that, when the pressure gradient is increased, the resistance to seepage 
in the flow of a microemulsion is reduced and increases when the pressure gradient is decreased. In 
this sense, the rheological behaviour of a microemulsion is of a non-Newtonian nature (the effective 
viscosity decreases with increasing applied stress). The reasons for this behaviour are associated with 
structural rearrangements in microemulsions. Several possible details of this process have been proposed 
have been proposed in [3]. However, not all its special features have been fully investigated. We will 
therefore confine ourselves to a phenomenological approach to the description of phenomena of this 
kind and the specification of functions of the relative phase permeabilities (RPP) of water and oil, taking 
account of their non-equilibrium nature. 

Using well-known approaches to the simulation of non-equilibrium flows in porous media [4], we 
will write the kinetic equations for the non-equilibrium RPP of water (the displacing phase) nl(s) and 
oil (the displaced phase) n2(s) in the form 

On i ni+~cj--~-=ki(s)v(q), i=1,2; q=l~p/~x[ (1.1) 

where "r 1 is the restructuring time, kl(s), k2(s) are the equilibrium relative phase permeabilities of water 
and oil, respectively, s is the saturation of the displacing phase and p is the pressure. The introduction 
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of the function ~(q) enables one to describe the non-Newtonian properties of the water-oil micro- 
emulsion 

I I - exp(-bq), Oq / Ot > 0 

W = [O,Ol[exp(bq)- 11, OqlOt <0 (1.2) 

The values of this function for the same absolute values of the pressure gradient, determined for a 
decreasing and an increasing pressure gradient, are not the same, that is, the phase permeabilities exhibit 
hysteresis. 

The equations of motion and continuity for the displacing and displaced phases are writte n in the 
form 

3V2 kn2 
V l = - - - - ~ ' g r a d  p, V2+1;  2 - - -  gradp (1.3) 

gl Ot g2 

Op . b s  .,,, 3p Os 
s[~; ~ t  + m ~ t  + div Vl = O ( 1 -  s )P2 -~t - m - ~  + div V2 = O (1.4) 

where ILl, 1~2 are the viscosities of the displacing and the displaced phases, V1, V2 are the seepage rates 
of the phases, "r2 is the relaxation time, I~], 15[ are the coefficients of elastic compliance of the phases, 
k is the absolute permeability of the porous medium and m is the porosity. 

For generality, the equation of motion of the displaced phase is taken in the relaxation form [4]. 
Equations (1.1)-(1.4) are used to describe the process of the immiscible displacement from a sample 

of a porous medium where a constant flow rate of the displacing fluid is maintained in the inlet cross- 
section and the initial pressure in the model of the porous medium is maintained at the outlet. The 
initial and boundary conditions, which close the system of equations, therefore have the form 

nl(x,0)=0, n2(x,0)=F2-const, s ( x , O ) = s  c, p ( x , O)=  p o 
(1.5) 

s(0,t) = s r ,  V(0,t) = V o, p ( L , t )  = Po 

where sc and ST are the initial and final (limiting) saturation of the displacing phase, F2 is the value of 
the RPP of the displacing fluid when s = s¢, Po is the initial pressure in the model of the stratum, 
V = VI + 1"2 is the overall seepage rate, Vo is the seepage rate in the inlet cross-section of the model 
of a porous medium and L is the length of the model. 

We introduce the dimensionless variables 

x p ,  _ _  g = v ,  - v .~=~., i f =__  ~ _  q L ,  ~ V = - -  
p0 p0 Vo' Vo 

i = V°t , "~i = V°xi , i = 1,2 
mL mL 

The bars are henceforth omitted. After some reduction, the continuity equations (1.4) are written 
in dimensionless form as 

0p 0 ' . Opl a ov2 
+ °n2'  xxJ-X2 x'x at =0  

L.. 

Os + O-~-(FV)+x2 ~-~--F ~V2 =o (1.6) 0 p  
's~t *-~t ox ox at 

~. = ~*Po a = kp----L-° ~'1 = ~ l  Po F = [.t o = I't--Ll 
m ' VogLL' m ' 112 

V -  ~, dx+l,  
0 

nl 
) 

nj + P.0n2 

The system of equations (1.6) is decomposed with respect to the physical parameters and this enables 
one successively to calculate the pressurep using the first equation, and using this pressure, to calculate 
the saturation s from the second equation. 
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Correspondingly, Eqs (1.1) and (1.3) and the initial and boundary conditions (1.5) are reduced to 
dimensionless form. 

2. ASYMPTOTIC ANALYSIS 

The complete mathematical model in the form of Eqs (1.1)-(1.4) with the corresponding initial and 
boundary conditions is practically inaccessible for analytical investigation due to its complexity. We will 
therefore confine ourselves to an asymptotic analysis of the ordinary differential equation for the pressure 
gradient q. Equations (1.6) are simplified when the effects of inertia and the compressibility of the phases 
are neglected (that is, when ~'2 = 0, 13~ = 0, 13~ = 0, V = 1). 

Integrating the first of these and transforming using Eqs (1.1), instead of (1.6), we obtain 

~q ~s ~F ^ 
"q "~t -q+q2cp(s)u/(q)=O' ~t't + '~x =u (2.1) 

¢p(s) = a(k I (s) + I.t0k2(s)) 

As the final result, we arrive at the system of equations (1.1), (2.1) with the initial and boundary 
conditions 

q(x ,O)=q o, s (x ,O)=s, ,  nj(x,0)=0, n2(x,0)=F 2, s(O,t)=s r 

It is assumed, in determining the initial condition for the pressure gradient q, that the pressure 
redistribution time-due to the compressibility of the fluids is negligibly small compared with the 
displacement time. It follows from this that the unsteady pressure redistribution processes due to 
elasticity effects are complete at the beginning of the displacement process. It can therefore be assumed 
on the "slow" time scale t that, up to the beginning of the displacement process, the pressure gradient 
attains its initial value q0 at all points of the flow domain. 

Further simplifications are achieved due to the smallness of the parameter TI which is of the order 
of 10-3-10 -2 in the processes under consideration. 

It should be noted that it is impossible here simply to neglect terms with the small parameter a" 1 since 
the perturbations are of a singular character and, moreover, it is precisely the terms TlOni/Ot which are 
responsible for the rapid oscillations which arise in the system. The simplification is possible here due 
to the separation of the fast and slow processes. On introducing a "fast" time T = t/T1, within the 
framework of the method of two-scale expansions, we obtain 

Oq - q +'CI ~tt = --q2~(s)W(q)'  c~s , c3s 

+,,, +,,, ( ) 
3T +ni+'q ' -~ ' t=ki(s)W(q) '  i=1,2 F" dE 

(2.2) 

The asymptotic with respect to a small parameter q, s, n i is constructed for the functions T1 in the 
form 

q = q° (x , t ,T )+x tq l (x , t ,T )+O(x~) ,  s = s ° ( x , t , T ) + x : l ( x , t , T ) + O ( ~ p )  (2.3) 

,,~ = , , ° (x , t ,T )+  x :~ l (x , t , r )+ofx~) ,  i= 1,2 

It follows from Eqs (2.2) that the function s o = s°(x; t) is independent of the first time T. The 
inhomogeneous equation 

3s t 3s ° , 0 0 3 s °  0 
_ _ +  . + F (n l ,n2)--~-x = 
~T dt 

is obtained for the correction s 1 in the following step. 
Assuming that the dependence on the fast time T is periodic, from this equation, after 

integration over the period of the oscillations T*, we obtain the equation for s°(x, t) in the slow 
variables 
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as o as o T" F'tn ° n °)dT = 0 (2.4) 
t I ,  2 

at + "~-x 0 

Hence, the system of equations (2.2), which has been mainly supplemented by Eq. (2.4), turns out 
to be a closed system with respect to the main terms of the asymptotic: qO, s o, n o, n~. 

Assuming that the function of the slow variables s°(x; t) is known, the equation for q can be considered 
as an ordinary non-linear differential equation. The analysis of thesteady-state solutions with respect 
to T and their stability reduces to an analysis of the equations for qU since s U is independent of time T. 
The steady-state solutions are detejnnined by the roots of the transcendental equation 

- q  + q 2tp(s)V(q ) = 0 (2.5) 

There are two roots in the / case of the upper branch ~(q) from (1.2): a zero root and non-zero on 
q* ~ 0. Equation (2.5), which has been linearized close to q = 0, has a growing solution q = expT, and 
this root is therefore unstable. The solution of the equation which has been linearized close to q = q* 
decreases as q = exp(-otT), a = 1 + q*tV(q*)l~J(q*) > 0, and the root q* is therefore stable. There are 
no steady-state solutions on the lower branch. Any solution q = q(T) (apart from q = 0) tends to a 
stable equilibrium position q* = q*(s). In this case, the motion q(T) to q* occurs along the upper branch 
(Fig. 1) in a finite time. 

The stability conditions are obtained under the assumption that ~(s) = const. However, it is necessary 
to take account of the fact that the saturation s = s°(x, t) depends on the "slow" time and increases 
monotonically. Correspondingly, the function ~0(s) also changes and the point of equilibrium therefore 
moves such that q* = q*(s(x, t)) increases monotonically with respect to t. For this reason, the quantity 
q ---- q°(T, x, t) crosses the point q* after a finite time. At the instant when crossing occurs, there is a 
breakdown of the system onto the lower branch in accordance with (2.2). On this branch, the values 
of the pressure gradient decrease to a magnitude Co, at which value there is a transfer onto the upper 
branch and the process is repeated. 

The two-valued property of the function t~(q) (hysteresis) and the slow changes in the function 
s(x, t) are the cause of the rapid oscillations. They also determine the character of the fast oscillations, 
in particular, the amplitude and period. It should be noted that the amplitude and period vary slowly 
due to the motion of the point of breakdown (Fig. 2). 

The period of the oscillations on the slow time scale is estimated from the order of magnitude 
of O(a'lln(1/'q)). This estimate is obtained from a calculation of the time of the motion from one 
breakdown point q~(x, to) to another q](x, tl). Bearing in mind that the velocity of the motion of the 
point q*(x; t) is finite, the time of the motion on the slow scale is estimated from the distance t* = tl 
- to  = O(Iq~ -q ] l ) -  The time of motion of the current point q(T, x, t) in this interval on the fast time 
scale is determined during the integration of the first equation of system (2.2) for the leading term of 
expansion (2.3). 
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T* = 'i  ~ dq q; q _  q2to~(q), tO = tO(S(to)) 

The lower branch of the function ~(q) is chosen when q ~ [C 0, q~] and the upper branch when q e [Co, 
q~]. Since a q~(x; to) is first-order zero of the integrand of the function in the upper branch, then, for 
q~(a; tl) close to q~(x; to), the estimate T* = O(1 In [ q~-q~ II ) holds. Taking account of the relation between 
the fast and slow times, we obtain the relation t* = a-lO (lln t* 1), whence, in the first approximation, t* = 
"qO(lln ~'1 I)- 

The conclusions of the asymptotic analysis are confirmed by the results of numerical calculations using 
model (1.1)-(1.4). 

3. N U M E R I C A L  A N A L Y S I S  OF T H E  S Y S T E M  

The system of equations (1.1)-(1.4) was solved numerically [5] in order to investigate the qualitative features of the 
proposed model of two-phase seepage. Equations (1.1) and the second equation of (1.3) were approximated by special 
finite-difference schemes with an exponential adjustment which take account of the existence of small parameters 
accompanying the higher derivatives. [6] Equations (1.4) and (1.7) were integrated numerically using the well-known 
"implicit" pressure-"explic!t" saturation scheme [5]. In order to ensure the stability and the necessary accuracy of 
the difference schemes a spatial step of the variable h = 0.01 and a time step I = 0.0001 were chosen. The pressure 
drop Ap as a function of the dimensionless time t, which is equal to the ratio of the volume of the fluid pumped into 
the pore volume, is represented by the solid curve in Fig. 2. The calculations were carried out for 

P0=0.2, xj=0.01, T 2=0.01 

/" \5/2 f \3/2 
/ . 

t sr -so ) k Sr - sc ) 

It can be seen that pressure drop oscillations arise in a system with non-linear properties. The unit of dimensionless 
time corresponds to 2 × 104 s. The elastic properties of the stratum system amplify the pulsation in Ap, which are 
observed until the saturation throughout the whole length of the model attains a limit value st. When Xl = 0, there 
are no oscillations in Ap. This means that the existence of a lag in the structural rearrangement processes of 
rheologically complex media leads to their occurrence. 

The use of a seepage relaxation law (the second equation of (1.3)) leads to a retardation of the displacement 
process. Saturation profiles, calculated when t2 # 0, lag behind the profile when r2 = 0, while the structure of the 
saturation front barely changes. Calculations were carried out for various values of rl, r2, tx0, k; 110. Variation of 
these quantities leads to a change in the amplitude and frequency of the oscillations. 

4. C O N C L U S I O N  

Hence, it has been shown that oscillations of the pressure drop with time arise during two-phase seepage 
in a porous medium and these oscillations are the result of the combined effect of  the non-linear 
properties of  a microemulsion and the effects of  a time lag in the establishment of the phase 
permeabilities in immiscible displacement processes. 

The theoretically observed pressure drop oscillations are qualitatively confirmed by the data from 
laboratory investigations into the seepage characteristics of porous media. The experimental 
dependence of the pressure drop on time is shown by the dashed curve in Fig. 2. This experimental 
dependence was obtained for the displacement of oil by water from a model BS1_5 stratum under the 
conditions for the Prirazlomnyi bed (L = 0.1647 m, m = 0.17, k - 0.021 ~tm 2, F2 = 0.58, sc = 0.285, sr  
= 0.718, 110 = 232.32 m/year and ~0 = 0.27). 

The model described enables one to interpret the pressure gradient oscillations observed in 
experiments on the displacement of oil by water from a sample of a porous medium. 

It can therefore be concluded that pressure drop oscillations, which are usually considered as 
unfortunate, interference and experimental errors, can serve as a source of useful information in 
determining of the collecting and seepage Characteristics of a stratum. 
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